P M iR P T T AR T IR IR) R M=

IEEE Transactions on Parallel and Distributed Systems, Vol 3, No. 6
November 1992.

Methodical Analysis of Adaptive Load Sharing
Algorithms

O. Kremien, J. Kramer

Department of Computing,
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, U.K.

email: ok@uk.ac.ic.doc, jk@uk.ac.ic.doc

Index Terms: adaptability, algorithm evaluation, efficiency, hit-ratio, load sharing,
performance, scalability, stability.

ABSTRACT

This paper presents a method for qualitative and quantitative analysis of load sharir
algorithms, using a number of well known examples as illustration. Algorithm design choice
are considered with respect to the main activities of information dissemination and allocatic
decision making. We argue that nodes must be capable of making local decisions, and for t
efficient state dissemination techniques are necessary. Activities related to remote executi
should be bounded and restricted to a small proportion of the activity in the system. Tt
guantitative analysis provides both performance and efficiency measures, includin
consideration of the load and delay characteristics of the environment. To assess stabili
which is also a precondition for scalability,we introduce and measure load dhiriaijo, the

ratio of remote execution requests concluded successfully. Using our analysis method, we i
able to suggest improvements to some published algorithms.

www.manaraa.com

1. INTRODUCTION

Distributed systems offer the potential for improved performance and resource sharing. In su
systems it is possible for some nodes to be heavily loaded while others are lightly loaded
even idle, resulting in poor overall system performance [21]. Improving performance is i
difficult goal. Eager et al. [11] have noted that within the myriad of load distribution algorithms
proposed in the literature lie two distinct strategies for improving performance: load balancin
algorithms, which strive to equalise the workload among nodes, and load sharing policie
which simply attempt to assure that no node is idle while other software components wait fi
service. Krueger and Livny [18] show that load balancing strategies put much higher resour
requirements on the system than load sharing strategies, and that these resource requirern
may outweigh their potential benefits. Furthermore, scalability may require that a loau
distribution policy is forced to limit negotiation to a subset of nodes. We therefore concentrat
on load sharing.

The purpose of load sharing is to improve performance (e.g. reduce average response-time’
smoothing out transient peak overload periods on some of the nodes. This can be achie
through dynamic initial placement and by redistributing the workload among the nodes afte
start-up.

Our model of thehysical distributed system assumes multiple independent processing node
interconnected by a communication network. Our model diotijieal distributed system is that

of multiple independent applications, which may comprise single or multiple software
component processes, running on the same physical system. Requests for application creat
which translate into the creation of one or more component processes, arrive randomly
nodes. In this environment, load sharing is the problem of allocation: of mapping an
remapping the logical system to the physical system.

A flexible load sharing algorithm is required to be general, adaptable, stable, scalabl
transparent to the application, fault tolerant and induce minimum overhead on the system [J
28].

For instance, scalability implies that an algorithm should be independent of physical syste
characteristics such as system size and physical topology, and exhibit minimum sensitivity
physical resource characteristics such as communication bandwidth and processor spe
Whenever any of these characteristics is scaled up, speed ratios and consequent delays ir
system may change. We require that the algorithm should still apply after such changes. Sir
some of the algorithms studied in this paper were not designed to be independent of syst
size, emphasis will be put on the effect of delays. Mirchandaney, Towsley and Stankovic [2.

page 2

www.manaraa.com

studied the problem of communication delays and out-of-date state information and its impa
on simple threshold load sharing algorithms. Unfortunately, probing overhead was sti
assumed to be negligible. We believe that non-negligible delay should be assumed for
message exchanges [6, 13] in order to permit a thorough study of the effects of delays.

Algorithm stability, which is a precondition to scalability, is an indication of the ability of the

algorithm to avoid poor allocation decisions. To assess stability we identify and measure lo:
sharinghit-ratio, the ratio of remote execution requests concluded successfully. Anothe
measure of stability is percentage of remote execution in the system. Activities related to remc
execution should be bounded and restricted to a small proportion of the activity in the system

The properties listed above are interdependent. For example, lengthy delays in processing
communication can affect the algorithm overhead significantly, result in instability and indicatt
that the algorithm is not scalable. How should a load sharing algorithm be designed ai
evaluated, especially when design requires that some characteristics are sacrificed in favou
others? How can we aid the design and analysis process? This paper presents a method w
supports both qualitative and quantitative evaluation and aids the designer of an algorithm
make trade-offs for a particular environment. Use of the evaluation method is demonstrat:
showing the combined effect of delays and the selection of specific design choice:
Furthermore, the method is used to suggest improvements to some published algorithms.

Section 2 presents the qualitative analysis approach, stressing those issues left for the desit
to resolve. This analysis method is illustrated with an example from the literature. Fo
guantitative analysis, Section 3 presents an evaluation method which allows for objecti
comparison of different approaches to load sharing. Section 4 illustrates use of the analy
method on some published load sharing algorithms and enables us to suggest improveme
Conclusions are provided in Section 5.

2. QUALITATIVE ANALYSIS - ALGORITHM CHARACTERISTICS &
DESIGN CHOICES

As mentioned, a flexible load sharing algorithm is required to be general, adaptable, stab
scalable, transparent to the application, fault tolerant and induce minimum overhead on t
system. We now turn our attention to a qualitative analysis of load sharing policies. We discu
a number of algorithm characteristics based on earlier classifications [29, 9] which have be
extended to include other important characteristics. In particular dynamic (adaptive) distribute
cooperative algorithms are identified as the most promising [21, 25, 2, 8, 31 and others]. Tt
choice is highlighted in Fig. 1 using Casavant's Classification [9]. Design choices and ope
issues are discussed.

page 3

www.manaraa.com

—— optimal
static approximate
load sharing I_ centralised e Sub-optimal
i : heuristic
dynamic cooperative
_ optimal

distributed

non-cooperative
Figure 1. Casavant's Classification
Algorithm Design: General Properties

The responsibility for load sharing can be centralised or distributed. It can reside on a sinc
node or be distributed among the nodes. To be fault tolerant, algorithms should avoid having
single point of failure. Furthermore, for low overhead, they should employ simple technique
for fault-tolerance such as periodic information exchange. Researchers generally agree t
symmetrically distributed load sharing algorithms are preferable for fault-tolerance and lov
overhead purposes [25, 2, 31, 32, 28].

However there is less agreement with regard to scalability. The problem may lie with th
definition of scalability. Some include independence of system size in their definition [3], while
others [31, 32, 28] define it as the ability to handle a predefined maximum number of node
For the latter, a centralised algorithm may be employed. The functional capacity of an
centralised server is bounded and cannot grow when the system in which it is embeddec
enlarged. Consequently, as the system grows beyond a certain size, a centralised serve
bound to become saturated [3]. To be independent of system size, an algorithm should
symmetrically distributed, taking advantage of distribution by maintaining only a partial view
of the system at each node. The algorithm must then make the most from the partial informati
available. We use scalability to infer such independence of system size.

Load sharing involves software component allocation. Should a component be permitted to
allocated (migrate) once or many times? If the latter is the case, is it bounded? If a componen
allowed to migrate indefinitely, a system could be unstable and thrash. One can additiona
consider migration of more than one component at a time. Although this permits overloade
nodes to be rapidly offloaded, one has to avoid "flooding" other nodes, i.e. not all th:
components selected for remote execution are sent to the same target node. This calls
cooperation and negotiation.

page 4

www.manaraa.com

Load sharing can be supported at different stages in the component life-cycle (before or duri
execution) and at different levels of an application (the whole application or components of
distributed application). It is clear that the more flexibility that is allowed, the higher is the price
to pay for the service provision. Nevertheless, to exploit the potential flexibility in a distributec
programming environment, we believe that load sharing should take place at the configuratit
level, in terms of software components and their interconnections [22]. With respect to whe
allocation should take place, non-preemptive migration before a component/application
started (i.e. initial allocation/placement) is the simplest to support. The alternative, preempti\
migration of applications after start-up, requires mechanisms for checkpointing, transfer (
code and context, and restart [24]. To allow such migration at the component level additional
requires a guarantee of no loss of messages in transit [15]. Although migration after start-
provides greater flexibility, it is not clear that the benefit is worth the support costs which ar
much higher [12,19], especially in a distributed programming environment. We therefor:
believe that much of the benefit can be realised from good initial placement decision:
preferably at the component level.

An Example

For didactic purposes, to describe and illustrate our method, we select an example of a sim
distributed adaptive load sharing algorithm for dynamic initial placement of applications by
Zhou [32], termed ZhouD (DISTED- distributed). Each node periodically broadcasts its locg
load to all other nodes, unless it has not changed since the last update. A data structure at ¢
node holds load state information regardinghallies in the system. It is updated whenever a
state update message is received. It represents the node's view of the system state.
decision making component is activated upon application arrival, and uses a threshold trans
policy. When the local load is at or below some set threshgld|l Bpplications are processed
locally. Otherwise, a remote server is selected using the following placement policy. The loc
version of the state vector is searched for the least loaded node. If this load is lower than tha
the local node byA or more, the application is sent to that node and no acknowledgement i
expected. Otherwise, the application is processed locally. To ensure that remote executior
worthwhile, only applications with expected execution time abeye(@irawn from command
type) are eligible for remote execution.

As can be seen in ZhouD adaptive algorithms for load sharing comprise two main activities
information dissemination anddecision-making (control). We discuss each in turn.

page 5

www.manaraa.com

Information Dissemination

Information holding, exchange and update strategies play an important role in maintaining ti
local view of the system state at a node. Due to communication delays and state distributior
complete and consistent view of the entire system, or even of a subset , may never be availe
at a node of the system.

With the goal of minimising overhead, a state metric should be selected that concise
represents the load on the most congested resources. It should also indicate the capacity o
node in terms of those resources. The state metric chosen should have an absolute v
understood meaning. Since decisions are to be taken based on this state information,
requirement is that it should be a true reflection of load. For instance, we try to reduce tt
likelihood that a component sent to a remote node should find it or cause it to becon
overloaded.

Ferrari and Zhou [14, 30] have studied the problem of load metric selection and found
theoretical foundation for all load indices based on queue lengths. This foundation provides
justification for these indices, specifies the assumptions under which they are valid, and giv
an indication of the limits of their applicability. Queue length is the state metric used by th
algorithms studied in this paper.

Decisions made by a node are based on both local (such as local load state, communica
rates with other nodes) and non-local dynamic state information held in a state vector. A no
may also choose to keep some static information regarding other nodes in the system (¢
node identifiers). For all these types of information, we have to decide whether to hold sta
information regarding all nodes in the system, or only a subset of the system. If, for scalabili
purposes, subsets are used, then criteria must be specified for selecting the nodes tc
included in the subsets. In ZhouD, state information is held regarding all other nodes in tt
system. Therefore, the algorithm is dependent on system size .

There are few choices for load state update strategy [20]. A nhode may choose to requ
information when the need arises, disseminate information to advertise its state without
explicit request from another site, or use a predictive analysis technique to update the conte
of the state vector. The objective is to select a strategy which minimises the overhead impos
and provides the most accurate system state information when this is needed. Strategies b
on information request or predictive analysis may result in a long delay, especially when son
resources are overloaded. With state dissemination the node may have the information availe
when it is needed, and be able to make local decisions as desired for scalability purpos
Birman and Joseph [5] have argued that “decisions should be local whenever possible since

page 6

www.manaraa.com

agent that must interact with others before making a decision would be delayed until the
respond”. Zhou concludes that algorithms using periodic and event-driven informatiol
dissemination policies provide comparable performance [31, 32]. Periodic state update is us
by ZhouD. However, if dissemination costs are high, periodic state update can result in a hi
percent of wasted load exchanges. In addition, it can result in outdated information if th
update rate is too slow. This can be mitigated to some extent when periodicity is dynamical
tuned as suggested by Zhou. With event-driven state update, a load message is sent only af
significant change has occurred. If n-statgpresentation of the load is used, with a method to
filter out insignificant transient changes, state update is not expected to occur frequently. O
can still prevent overuse at high event rate by means of a lower bound periodicity, i.e. preve
state exchange before a certain period has elapsed since the last state exchange. To take ac
of failures, a combination of event-driven and slow periodic update may be used.

A decision needs to be made as to whether to send only direct information (informatio
regarding only the node itself) in a state-update message, or to include also indirect sta
information (information regarding other nodes in the system) [25, 2]. If the latter is selectec
which other nodes should be included? How are different estimates weighted? How a
outdated estimates filtered out? The only up-to-date state information that a node holds is
own. An earlier version of MOSIX [2] used indirect information. Experience with this

mechanism has shown that it resulted in misleading (outdated) information, and the ne
version uses only direct information [4]. In ZhouD only direct state information is used. One
can still decide whether to update all nodes in the system, as is done in ZhouD, or only
subset. Use of broadcast [21, 32] or multicast [28] results in intolerable overheads. If subse
of maximal predefined size are selected, one needs criteria to choose the nodes to be include

Decision Making

A load sharing policy tries to reduce the mean response time through remote initial placeme
and migration after start-up. Any load sharing policy should also strive to minimise remot
execution activities in the system. When the system is heavily congested, much higher dele
than the average may be expected which can severely degrade performance. As concludet
Zhou [31], only a small percentage of the applications need to be remotely executed in order
achieve effective load sharing .

With symmetrically distributed load sharing, the algorithm is distributed (replicated) across a
nodes in the system. When should remote execution be considered, i.e. whatassfee
policy [11] ? In ZhouD a threshold transfer policy is used. Which components are eligible fo

1Mapping.a metric of a large number of possible values into a small set of n values.

page 7

www.manaraa.com

remote execution? Clearly only those components which can execute on any other node in
system with exactly the same results are eligible. In [6, 30] it is shown that even when 50-70
of all components are immobile (i.e. must execute locally), performance improvements due
load sharing can still be realised. Filtering techniques are suggested to set the eligibility
components for remote execution [27]. In ZhouD, eligibility is also based on estimation of cp
requirements. Since this is not always possible, we believe that whenever a component
mobile, filtering should simply be based on current load conditions. The objective is always t
minimise the number of software components moved so that performance reduction is st
achieved. When a component is found to be eligible for remote executiorpedtiin policy

[11] is used to determine to which node a component selected for transfer should be se
ZhouD selects the least loaded node provided that it is less loaded by Af Basirding to
state information available at each node.

time time time \)esi time

1 carry-on
_____ t+1

t+2

source server source server carry-on
Figure 2: Source initiated: Figure 3: Server initiated
Single request Request-reply
time time ti ime

t+1

t+1 - carry-on

t+2

t+2

t+3 e carry—on

source server source server

Figure 4: Source initiated negotiation,
without (left) and with (right) work attached.
Who should initiate remote placement or migration? It can be initiated by the source of wor
(overloaded node), or the server of work (underloaded node). A source initiated algorithm ci

be limited to a single request (Fig. 2) or involve a request and a response (Fig. 4), wherea
server initiated algorithm involves both a request and a response (Fig. 3).

Source-initiated algorithms place much of the overhead on the overloaded nodes, where
server-initiated algorithms place much of the overhead on the underloaded nodes. The lat

page 8

www.manaraa.com

have the potential of being more stable, since the algorithm is initiated by the underloaded nc
which can more easily prevent overloading by controlling the amount of work requested. Onc
a node is no longer underloaded, it will stop requesting work. Furthermore, the algorithm ce
be 'turned off' under heavy system loads, since there are no requests for load transfer if th
are no underloaded nodes. Server-initiated algorithms also degrade more gracefully sinci
failed server will cease to request work. A disadvantage of server initiated algorithms is that tl
server is not always aware of event occurrence at the source which may prompt remc
execution.

One should also decide whether to employ a single request protocol or negotiation. Sinc
request protocols, as used in ZhouD, are fast but not robust. They can lead to instability a
performance degradation resulting from incorrect decisions. It is possible for a burst of wor
(flooding) to be imposed on a node which was mistakenly considered to be underloade
Negotiation enables poor decisions to be tolerated by inhibiting their consequence: a b
decision can be reversed. With negotiation, work in transit can be taken into account by tl
server. The disadvantage of negotiation, when it is not possible to attach the work to tl
request, is that compared with a single request protocol, the number of phases involved
larger and will result in a longer delay. With negotiation, one has to defirectieptance
policy to determine which components selected for transfer should be accepted by the selec
destination.

As a consequence it seems that a combination of negotiation initiated by the server wh
possible, and by the source when it is the only one aware of an event occurrence, can give
best results in terms of performance and stability but at a slightly higher cost than sing
request.

There are a number of possibilities for specifyivtgen decision-making should be activated:
periodic decision making [25], event based decision making, as in ZhouD (upon applicatic
arrival), or a combination of these choices.

With periodic decision-making it is hard to select a sensible time period, since it is ver
dependent on the loads on the system, and needs to be tuned to reflect the dynamics of
system. We advocate the use of a combination of the two methods with events as the be
method and a lower bound periodicity selected to prevent overuse and overload. This helps
prevent an algorithm from being invoked too frequently when event rate is high, and keeps
from ‘stealing’ more than an allowed percentage of cpu time. It also permits its operation at tt
highest allowed rate in overload conditions.

page 9

www.manaraa.com

Qualitative Analysis Summary

The DISTED algorithm suggested by Zhou is general. The algorithm is not scalable since eve
node holds information regarding all other nodes, and it updates and is updated by all otr
nodes. (Note that the algorithm was not designed to be independent of system size and
emphasise this point for didactic purposes only.) Also, the algorithm does not try to limi
remote execution activity for scalability and stability purposes. This may cause furthe
performance degradation. The algorithm is source initiated, using a request only protoc
which does not allow a destination node to reject additional load when it is unable t
accommodate it. Each of the issues raised can lead to instability. Thus, under certe
circumstances, we may expect to have a high percentage of fruitless decisions which cannot
refused (i.e. moved applications arriving at overloaded nodes producing high percenta
remote execution and low hit ratio). ZhouD is summarised in Table 1.

ZhouD
decision making invocation event driven (application arrival)
transfer policy local information only (threshold)
location policy least loaded
acceptance policy single request - no rejection allowed
information policy periodic state dissemination

Table 1: ZhouD - design choices

When designing a load sharing algorithm, there are numerous design choices and open iss
left for the designer to resolve. These issues have to be examined carefully with respect to
required properties and applications environment. In this section we have presented the
issues together with a discussion of some of the implications of design decisions. For a mc
guantitative evaluation, measures of performance and efficiency are necessary. These
discussed next.

3. QUANTITATIVE ANALYSIS - ALGORITHM EVALUATION

For an objective evaluation of different approaches to load sharing, one needs a quantitat
analysis technique for these algorithms together with a set of characteristics which capture |
essence of their behaviour. Casavant and Kuhl [7] have characterised the structure &
behaviour of distributed decision-making policies, with particular attention to load sharing
policies. The termperformance andefficiency are advocated.

In a general sense, performance is an absolute measure which is described in terms
response-time, utilisation or any other objective function specified. The efficiency of &

page 10

www.manaraa.com

particular solution is a relative term concerned with the cost or penalty paid for the level ¢
performance attained. Efficiency is normally characterised by resource demands in terms
time and space. We too adopt these terms for our analysis of load sharing algorithms, |
extend their meanings as follows.

Casavant defines performance in termsmfmality (how close to an optimal solution) and
stability. A stable system is defined as a system in which bounded input produces bound
output. This is necessary but not sufficient. We believe that activities related to remot
execution should be restricted to a small proportion of the activity in the system (applicatio
arrival). An algorithm should make local decisions, minimise the number of incorrect decision
and not allow them to proceed. Stability, overhead and scalability are thus related to the pri
paid for the level of performance attained. As a consequence measures of stability, overhe
and scalability should be part of the efficiency definition. In particular, a new measure o
stability and scalability should be added to the efficiency measures. Titisatio , the ratio

of successful decisions. A successful decision is one where, when a node is requestec
perform an operation, it is capable of doing so. An unsuccessful decision will result i
worthless information exchange or even fruitless component movement to an overloaded no
This should be minimised.

Performance Evaluation

Application performance is a function of the cpu requirements of the components comprisir
the application, the number of remote messages exchanged by these components, and
current load on required resources. Our objective function is to improve performance which
simply defined as minimisation of the system average response time. For this, the number
application remote messages exchanged has to be kept as low as possible. For each rer
message exchanged, we model the cost incurred by adding a delay to the time consumed by
message originator. Application performance (response time) is modeled as described in Fig
5.

page 11

www.manaraa.com

Given an application A, comprising n components: A(1)..A(n), we define:

response_time(A(i))=wait_time(A(i))+cpu_required(A(i))+itc_cost(A(i))+system_cpu(A(i)

where:
wait_time(A(i))=start_time(A(i))-arrival_time(A(i))

itc_cost(A(i))=number_of remote_messages(A{MESSAGE_DELAY
system_cpu(A(i))=cpu 'stolen’ for system activities during the component's execution

and

response_time(application AB__/:Il response_time(A(i))

..n
Given a system with a load-sharing algorithm LS and m applications running, we have:
m
performance(LS):response_time(L%%:lzz tdsponse_time(applicationA
k=1

Figure 5: system performance (response time)

In addition to the absolute metric of performance, relative ones are used to give guidance as
the likelihood of improved performance achieved by adding the load sharing facility to the
system. The performance of an algorithm under study is compared to the performance
baseline algorithms. Three baselines are us@dcooperation among nodes (no load
sharing);random - where a component to be moved is sent to a randomly selected nod
hoping to find it less loaded, and there is no state information exchange. The random algoritf
uses a threshold transfer policy, as in most of the algorithms studied in this iapé¥;
where nodes have accurate system state information when decisions are to be taken (making
unrealistic assumptions that there are no delays incurred by communication, and the cost
algorithm invocation is zero). Note that both no cooperation and ideal are independent of del
assumptions. In general, we would wish the evaluation of an algorithm to show that it
performance approaches ideal and is considerably better than no cooperation and random. |
algorithm is not significantly better (say at least 10%) than random, then the latter, which is tt
simplest load sharing algorithm that can be devised, should be used instead or a better solu
should be sought. Whenever possible, it is valuable to devise an analytical model (e.
gueueing model). This can approximate the behaviour of an algorithm, even under son
simplifying assumptions, or serve as a bounding case.

We define thalistanceof a load sharing (LS) algorithm from a baseline as a percentage:

response_timé@seling-response_timéS)
response_timé@seling

distancel S,baseling=100x

A positive distance indicates the improvement achieved under the assumptions made.
negative distance signals a degradation in performance. Algorithms being compared must t

page 12

www.manaraa.com

the same models for hardware configuration, network and cpu delays, and operate under
same loads. Before proceeding any further, we discuss the main costs involved.

Cost Modelling

Associated with each activity, i, related to load sharing is a basic execution time cost B(i). .
cost has to be assumed for initial placement, and a much higher one for migration after start-
Similarly, there are also cpu costs incurred every time an observation of the local state is tak
and whenever any preprocessing is performed (e.g average over a sliding window). RATE
represents the rate, per unit of time, at which an activity is invoked. This cost is a function ¢
the hardware configuration (system size, cpu speed, etc.), and also reflects the sophistical
of the activity. Some of these activities may involve message exchange and a compone
waiting for another to respond (e.g. initial placement which involves negotiation). The
following simplified cost function C(i) is used in our model:

C(i)=B(i)+(MESSAGE-DELAY x CYCLES(j))

CYCLES(i) is the average number of message exchange cycles during an invocation of activ
i and MESSAGE-DELAY is a given parameter. When there is no message exchange involvt
we have C(i)=B(i)

Load sharing activities 'steal' cpu time otherwise available for application processing. As
result they directly effect application performance. However, we have tried to keep the co
function as simple as possible, while still capturing the main contributors to delays. Fc
objective evaluation of different algorithms we need to be able to state the overhead per unit
time for each contributor to the total overhead (algorithm invocation, state collection etc.). Th
overhead per unit of time for activity (i) is given by:

overhead(i) = C(ix RATE(i)

The aggregate overhead per unit of time is given by:

n
aggregate overheadz Q>)XIRATE()
i=1

Related to the costs mentioned above is the cost of information transfer. The model should
flexible enough to permit different hardware configurations, such as the availability of
communication co-processors or their absence and use of diskless nodes as well as th
equipped with local disks. Diskless nodes, like the assumption of dedicated file server
indicate that the costs of accessing program and data files are roughly the same for all of -
nodes [32]. The other extreme, of stations equipped with local disks or shared file servers (i

page 13

www.manaraa.com

nodes providing both file service and application processing activities), imply that the costs «
accessing remote programs are much higher than local ones [25].

After using the performance measures to confirm that one or more approaches to load shar
will improve the overall performance of the system, the following efficiency measures can b
used to check which of the specific requirements are satisfied. The efficiency measures a
allow for trade-offs to be made when comparing different load sharing algorithms witr
comparable performance.

Efficiency Evaluation

Efficiency measurequantify the overhead or cost associated with the attainment of a specific
level of performance in terms of the following:

* memory requirements for algorithm constructs,

state dissemination costrate of load sharing state messages exchanged per node,
* % remote execution (initial placement or migration after start-up),

* run-time cost (in terms of cpu time) measured as the fraction of time spent running th
load sharing component.

Finally, as mentioned before, we use

* hit ratio, the ratio of successful decisions such that the node requested to acce
additional work is capable of doing so. This measure provides guidance asjtalitye
of the decisions made.

We have adopted the term ‘hit’ from virtual storage, where it means that the page is availak
in memory, whereas a ‘miss’ and the consequent page fault results in a much more cos
operation. In the load sharing context, a hit means that remote execution can proceed, an
miss means additional overhead before remote execution can progress, or wasted resource
case it is too late to stop it. Both can be costly.

Evaluation of General Algorithm Properties

These performance and efficiency measures support evaluation with respect to the requi
general algorithm properties described in Section 2.

Overhead - The efficiency measures listed above permit assessment of the run time co
induced by an algorithm, in terms of memory, cpu and communication bandwidth. To be ab
to make trade-offs, we calculate, for example, the cost per unit of time of running an algorithr

page 14

www.manaraa.com

This measure can be used to test the sensitivity to different values of the basic costs invol\
{B(1)...B(n)}, design choices made and communication delays. One can also check for whic
values the overhead exceeds a predefined percentage of cpu permitted to be ‘stolen’ from
application components. The other efficiency measures can be used in a similar way.

Adaptability - To show adaptability the algorithm under study (LS) should be tested under |
wide range of load patterns, but with the same overall load. We expect the performan:
measures, under all these different loads, to be within the allowed bounds:

distance(LS, no cooperation)T1, distance(LS, randon® Tz,

where T, T2 are predefined minimums (such as-30% T2=10%). For instance, for ZhouD
we obtain the performance results in Table 2.

response-time distance
ZhouD 1.76t0.035 not relevant
no-cooperation 3.81+0.08 53%
random 1.85+0.04 5%
ideal 1.53t0.03 -13%

Table 2: ZhouD - Performance Measures (Even load with 10ms delay)
Stability - This can be evaluated as
%remote execution, which should be bounded and restricted, say < 10% , and
hit-ratio, say > 0.90

For stability purposes remote execution decisions should be initiated at a low rate (to lim
%remote execution decisions) and concluded successfully (high hit ratio). This agrees wi
Zhou's conclusion that only a small percentage of the components need to be executed remc
in order to achieve effective load sharing [31]. For ZhouD, the efficiency results are given i
Table 3. Therefore, we have efficiency which is better than that of random, but still needs to |
improved.

%remote exec. hit-ratio overhead
ZhouD 21.29 0.77 0.006
random 32.6 0.52 0.002

Table 3: ZhouD - Efficiency Measures (Even load with 10ms delay)

page 15

www.manaraa.com

Scalability - This is measured by scaling up some resources while others remain untouche
To show scalability, the algorithm should be tested for different system sizes (with the san
relative load per node), node ordering, processor speeds and network delays (effected
communication bandwidth and resource congestion). Our goal is to have performanc
measures within allowed bounds. Insensitivity to scale is indicated if:

performance(LS(scalability-parameter=A))

performance(LS(scalability-parameter=B)) Ka

where a<<l, and A>>B. Scalability parameters can be system-size, node ordering
communication bandwidth, etc. The expected variation is representedy expect the
variation resulting from simulation to be negligible. Stability is a precondition for scalability.

Note that in order to show that an algorithm does not hold a specific property, it is enough
show that the relevant conditions are not satisfied for one particular case. Unfortunately,
show that a property does hold, we have to show that the relevant conditions are satisfied
all possible cases of loads and system sizes, which is, of course, impossible. Hence we mei
ask for reasonable assurance over a wide range of cases.

We believe that these definitions of performance and efficiency capture the most significal
characteristics of load sharing algorithm behaviour, and provide guidelines where trade-offs &
required. They also equip us with the means of showing that required properties hold
practice, by showing that the conditions are satisfied for selected cases of load, system-si
processor speeds and node ordering.

4. MORE EXAMPLES

This section illustrates the evaluation method using a number of well known adaptive loz
sharing algorithms for dynamic initial placement of applications. All algorithms are fully
distributed and designed to be adaptive, fault-tolerant and incur low overhead, but differ i
some of the other design choices made. They all use the same load state measure, queue le
and the primary goal is to minimise the average response-time in the system. The algorithi
selected for analysis are well known and widely referenced. They include early works b
Stankovic [25] and Eager [11] and more recent ones by Zhou [32]. In particular, Stankovic
work was one of the first studies of adaptive load-sharing algorithms, offering new insight
into the problem and suggesting novel solutions. Many important issues like processing a
communication overheads and their effect on performance and stability were first addressed
this paper. The algorithm published in [25] was selected as it sets an example for got
scientific practice by publishing all input data thereby enabling other researchers to test a

page 16

www.manaraa.com

replicate the results. (Suggestions for improvements were published by the same author
[26]). Note that, to some extent, the assessment is thus unfair as the algorithms were not
originally designed to meet all requirements, and that there exist more recent algorithms that can
potentially produce better performance results. Nevertheless they do provide good examp
for describing and illustrating our assessment method.

A simulation tool is used for performance and efficiency evaluation [16]. The efficiency anc
performance measures described in the previous section are available in the simulator to pet
objective evaluation and comparison of load sharing algorithms. The simulation model ar
associated tool were validated against some analytic models (queueing theory models).
addition, the results of published load-sharing algorithms were reproduced.

Assumptions
The following assumptions are used throughout our analysis.

Applications are processed in first-come-first-served order and are run to completion. A syste
is first analysed subject to an even load on its nodes (Table 4). The simulated system compri
5 node-types. Node types aid in the description of systems comprising a large number
nodes. Each node type is characterised by the number of nodes of this type, cpu demar
arrival rates and application size distribution functions. For a larger system all we need to do
multiply the #nodes as appropriate.

#nodes of| CPU requested arrival rate |[resulting intensity

this type per node
node-type] 1 exponential(0.5s) poisson(0.153 76.5%
node-type 2 1 exponential(0.7s) poisson(0.125 87.5%
node-type 3 1 exponential(0.6s) poisson(0.143) 85.8%
node-type 4 1 exponential(0.5s poisson(0.143b 71.5%
node-type § 1 exponential(0.7s) poisson(0.125 87.5%
overall load 81.76%

Table 4: Even load (71.5-87.5%) case

We also study the case of uneven or extreme load imposed on the system (Table 5). Both c:¢
have the same overall load.

#nodes of| CPU requested arrival rate |[resulting intensity

this type per node
node-type] 4 exponential(0.7s) poisson(0.144 99.3%
node-type 4 1 exponential(0.8s) poisson(1.075 11.6%
overall load 81.76%

Table 5: Uneven load (11.6-99.3%) case

page 17

www.manaraa.com

Each node in the system has a communication co-processor, and is also equipped with a t
disk. Delay in the network is modelled as a function of information size - the size of the
information to be sent divided by packet size (1K bits) times the average delay per pack
Application size is taken from the distribution function described in Table 6.

percentile| size | percentile] size | percentile] size | percentile| size
10 1000 60 1600(85 22000 98 3800
20 12000 70 1800(90 30040 99 440D0
40 14000 80 2000(95 34040 99.5 [50000

Table 6: Application size distribution

Packet delay (preparation (packaging), transmission and reception (unpackaging)) is assun
to be 10ms, and the basic cost per invocation for these very simple algorithms is assumed tc
10ms. These algorithms involve internal load state observation. The cost associated with st
observation or pre-processing of state information is assumed to be 10ms. Note that wh
conducting such a study, the ratio between the requested service time and various delay
more important than the absolute numbers [13]. Also, load assumptions are drawn fro
exponential distributions which are not always realistic [32]. Nevertheless, from this study w
are able to draw some important conclusions.

In his study of load-sharing algorithms, Zhou assumes that the work to be executed is attact
to the request message, and can be executed immediately upon arrival [32]. We make the s:
assumption.

Description of the Algorithms Under Study

With the algorithm proposed by Stankovic [25], termed ST, each node periodically calculate
an estimate of the number of applications at each node in the system, and sends t
information to the nodes to which it is directly connected (direct neighbours). State informatio
is updated as follows whenever a state update message is received. Load estimate of di
neighbours is updated according to the latest information received. For non-direct neighbou
an average over the estimates in all incoming messages is taken. This state vector represent
node's view of the system state. The decision making (control) function is activate
periodically, and also whenever the local scheduler is about to select an application fi
execution (following a completion event). For this algorithm, applications will not be remotely
executed when the system is very lightly or very heavily loaded. For moderate loads in tf
system, each node compares its own load to its estimate of the load of the least loaded nc
The difference between the loads of these two is then compared to a bias. If the difference

page 18

www.manaraa.com

less than the bias, the application is executed locally; otherwise, one application is moved to 1
least loaded node for remote execution, using a single-request protocol.

The third algorithm studied is the THRHLD algorithm, which is taken from Zhou's study [32].
It implements the Threshold algorithm suggested by Eager, Lazowska, and Zahorjan [11].
our study, this algorithm is termed EagerT. In EagerT, each server keeps track of a sing
valued load metric for itself only (again, queue length). The transfer policy is the same as th
of ZhouD (except that Eager's original algorithm does use cpu based eligibility). The locatio
policy employed selects a random node which is requested to accept additional load. A reque
reply protocol is employed. The potential server performs the same threshold decision, in orc
to decide whether to accept the additional load or not (acceptance policy). This can be repez
up to a specified limit.

Conclusions from Earlier Studies

Some important results drawn from these studies are that extremely simple load-sharil
algorithms, i.e. those that collect small amounts of state information and that use th
information in simple ways, yield dramatic performance improvements relative to the nc
cooperation case; that special concern should be given to the effect of occasional poor decisi
that will inevitably be made and may lead to instability; and that the overhead resulting fror
applying these policies and the state information method employed may negate the benefits
an improved load-sharing algorithm. An interesting result from Zhou'’s study [Zhou88] is tha
the impact of immobile jobs on load-sharing is found to be less serious than the immobilit
factor might suggest: most of the performance gains are still retained even when up to 50%
the jobs eligible for remote execution are immobile (must execute locally). Zhou also found th:
the performance of aliosts, even those originally with lighter loads, improve under effective
load-sharing. This is somewhat counter intuitive, but very encouraging: by cooperating wit
each other, no node seem to ld&eou also claims that a low percentage of remote execution
(initial placement or migration after start-up) is enough to realise the benefits of load-sharing.

Qualitative Analysis

Stankovic's algorithm ST is general and simple but computation time, communication an
memory overhead are system size dependent. Like ZhouD, it does not try to limit remo
execution activity for scalability and stability purposedtankovic uses a request-only protocol

2\We recognise that neither of these algorithms was designed to be independent of system size. This criticisn

intended only to illustrate the assessment method.

page 19

www.manaraa.com

which does not allow the destination to reject additional load when it is unable to accommode
it. Each can lead to poor performance and efficiency.

Unlike the other algorithms, ST uses (unreliable) indirect state information, on a comparativ
basis, when decisions are to be taken. It also uses periodic decision making. Both can resul
instability. The other algorithms base their transfer policies on local and accurate informatic
only (state information related to the node itself). This is expected to contribute to thei
stability.

ST and ZhouD are capable of making local decisions. By doing so they obviate the need to
through a, possibly lengthy, negotiation process before a decision is taken. If the sta
information available locally is of high quality (it represents the real state of the nodes), this c¢
contribute to stability and scalability since nodes become less dependent on current delays
the system.

ZhouD can be viewed as a slight improvement of ST. The transfer policy is based only on loc
accurate information. Also, only direct state information is used. But the algorithm still uses
request only form of protocol. We anticipate high percentages of fruitless decisions whic
cannot be reversed (migrated applications arriving at overloaded nodes). Each of the issi
raised can lead to instability. ZhouD is expected to result in high %amovement and low hit ratic
Worse performance and efficiency are expected from ST.

With EagerT, computation time is not dependent on the system size. The request-reply proto
employed allows for rejection of additional work. On the other hand, for each decision to b
taken, a node goes through a multi-phase probing process. In the case of long delays resul
from congested or slower resources, this can degrade performance and efficiency. Also,
employing a random-based location policy, Eager limits applicability of his algorithm. In his
study, Zhou employs Eager's algorithm for non-homogeneous loads. We do the same.

Note that the state metric used by all algorithms (queue length) does not have an absolute v
understood meaning. This and other information policy related issues are not discussed furtl
in this paper.

The main design choices relevant to our study are summarised in Table 7. We now turn ¢
attention to a quantitative analysis of the above algorithms. Whenever possible, algorithms
the same parameter settings as recommended in the original papers.

page 20

www.manaraa.com

ST ZhouD EagerT
decision making | basic method: periodic event driven (application | event driven
invocation and also event driven arrival) (application arrival)
(application completion)

transfer policy local and indirect non-loca| local information only local information only
information on a (threshold) (threshold)
comparative basis

location policy least loaded least loaded random

acceptance policy| single request - no rejectigrsingle request - no rejectigmequest-reply to allow
allowed allowed rejection (threshold)

information policy| periodic state disseminatign periodic state disseminafgwabing (request-reply)

upon application arrivdl

Table 7: Design choices summary
Quantitative Analysis

In this section we first discuss the selection of algorithm parameters before proceeding with t
comparative analysis.

ZhouD - Threshold Setting

Before applying the evaluation method described above we run Zhou's algorithm was run foi
few cases. Only the load threshold and cpu threshold parameters of the transfer policy we
allowed to vary. Estimation of the cpu requirements in an application is not always possibl
Furthermore, it appears that comparable performance can be achieved by setting the ¢
threshold to zero and selecting a |dlakshold of a higher value since both tend to restrict
remote execution activities.

Response-time| %remote exec.
Tg=1,Tcpu=500mg 1.92+0.04 20.10
Tg=1, Tcpu=0ms 1.79+0.03 40.1
Tg=2, Tcpu=0ms 1.76:0.03 30.7
Tg=3, Tcpu=0ms 1.81+0.05 20.5
Tg=4, Tcpu=0ms 1.870.05 15.2

Table 8: Threshold setting

The performance achieved (Table 8) confirms our hypothesis regarding eligibility. We ge
comparable results fond1,Tcpu=500msand for T=3, Tcpu=0.

Note that even when parameters are tuned for one set of conditions, they may not be the
under different conditions. Another possibility is to dynamically change parameter settings t
reflect the dynamics of the system. This may not be a good approach because of the deme
in storage and computation time that may be imposed on the system. We tune some of
parameters for the basic case (10ms delay) when even load is imposed on the system. Note

page 21

www.manaraa.com

different parameter settings could be attained under different delay or load intensit
assumptions. In any case, our main goal is to show the significance of some design choic
and their effect on the general behaviour of an algorithm rather than the absolute performar
results themselves.

Both ZhouD and EagerT result in good performance unde}. For fair comparison we select
the same Mthreshold value (queue length) to be used by both, withu et to zero.
Information dissemination period is 500ms @nid set to 1 (as in Zhou's study).

EagerT - Probe Limit

response-time| %remote exec| hit-ratio overhead
probe limit=1 1.78t0.035 16.4 0.60 0.006
probe limit=2 1.85+0.036 18.5 0.44 0.008
probe limit=5 1.81+0.036 22.1 0.36 0.010

Table 9: Probe limit setting

For EagerT, we use a probe limit of 1. Even under these favourable conditions (delay of 10
repeated probing does not seem to improve performance and at the same time it is harmfu
efficiency (Table 9).

Stankovic's Algorithm - Periodic Decision Making

For the ST algorithm, we use a bias of 2 (as recommended in his study) and the time betwe
invocations is set to 800ms.

ST uses periodic decision making which is hard to tune. We run the algorithm with mor
frequent decision making (every 500ms instead of 800ms). By invoking the algorithm mor
often, performance is still in the same range, although slightly degraded (Table 10). Tt
degradation in efficiency is more significant. It is clear that periodic decision making is hard ti
tune when there is no prior knowledge and can itself be a source of instability.

response-time| %remote exec| hit-ratio overhead
decision making=800nis 1.86t0.037 36.37 0.77 0.028
decision making=500ms 1.90t0.038 43.9 0.59 0.036

Table 10: ST with Frequent Invocations
Analysis under Favourable Conditions (10ms delay)

The results achieved under the assumptions made are compared to the three baselines
cooperation, random andideal. All algorithms give a significant improvement in

page 22

www.manaraa.com

performance over no cooperation (>50%, Table 11) but not all significantly improve randor
(>10%) even under these favourable conditions. As expected, these algorithms suffer frc
poor efficiency. Results were achieved with a confidence interval of 90% and 1-3% accurac
(ususally 2%).

response-time | %remote exec.| hit-ratio overhead
STankovic 1.86t0.037 36.37 0.77 0.028
ZhouD 1.76t0.035 21.29 0.77 0.006
| EagerT 1.78t0.035 16.4 0.60 0.063
no-cooperation 3.81+0.08 not relevant not relevart not relevant
random 1.85t0.04 29.5 0.56 0.007
ideal 1.53t0.03 not relevant not relevarjt not relevgnt

Table 11: Favourable conditions case (10ms state processing)

Analysis with Congested Resources / Different Service Speed Ratios (Less
Favourable Conditions)

Poor efficiency and its implications on performance becomes more evident when conditions &
less favourable. We first run the random algorithm, to see the implications of delays on 1
performance and some of the efficiency measures (Table 12). From the results achieved,
can see that even a simple random algorithm, based on a threshold transfer policy can achi
significant performance reductions without any state information exchange. We now run tr
algorithms studied with longer network-delays (25ms, 100ms and 150ms) resulting fror
congested resources. Response-time results are compared to those achieved for the same
assumption. All other cost assumptions are left unchanged.

response- | %remote hit- | overhead| degradation
time exec. ratio vs. 10ms
random-10ms 1.85+0.04 29.5 0.56 0.007 not relevant
random-25ms 1.96+0.04 29.5 0.55 0.012 -6%
random-100ms| 2.370.05 27.4 0.58 0.053 -28%
random-150ms| 2.43t0.05 25.3 0.62 0.056 -31%
Table 12: RANDOM under Different Delays
response- | %remote hit- overhead| degradation| distance from
time exec. ratio vs. 10ms random
ST - 10ms 1.86+0.037 36.37 0.62 0.028 not relevant 0%
ST - 25ms 1.98t0.040 38.44 0.56 0.038 -6% 0%
ST - 100ms| 2.46t0.050 37.05 0.47 0.089 -32% -3.7%
ST - 150ms| 2.75t0.028 35.60 0.44 0.132 -48% -13%

Table 13: ST under Different Delays

page 23

www.manaraa.com

We can see from Table 13 thatder theassumptions mad&T does not improve performance

if compared to random. Under a different set of assumptions, ST may exhibit bette
performance than random. We actually had to use a higher cost for state processing than 1
used for the other algorithms, but to be able to make an unbiased judgement we use the si
overhead assumption. ST exhibits poor efficiency. On top of the other reasons for instabilit
we also have the use of indirect information on a comparative basis.

We now try ZhouD for various delays. With ST and ZhouD (Table 14), performance
degradation is mainly the result of excessive fruitless migration, which now costs more.
compared to ST, ZhouD exhibits an improvement of both performance and efficiency. Unlik
ST, all other algorithms base their transfer policies on local and accurate information only (ste
information related to the node itself). This contributes to their stability, although with
insufficient effect.

response- | %remote hit- overhead| degradation| distance from
time exec. ratio vs. 10ms random
ZhouD - 10ms | 1.76:0.035 21.29 0.77 0.006 not relevant 5%
ZhouD - 25ms | 1.81+0.036 21.89 0.73 0.010 -3% 8%
ZhouD - 100mg 2.18t0.042 23.00 0.62 0.035 -19.3% 8%
ZhouD - 150mg 2.29+0.046 21.80 0.57 0.054 -30% 6%

Table 14: ZhouD under Different Delays

response{ %remote hit- overhead| degradation| distance
time exec. ratio vs. 10ms [from random
EagerT - 10ms| 1.78t0.036 16.4 0.60 0.063 not relevant 2.7%
EagerT - 25ms| 1.970.039 17.5 0.54 0.0032 -9% 0%
EagerT - 100m$2.26+0.043 16.3 0.54 0.040 -21% 4.6%
EagerT - 150m$2.49+0.050 16.9 0.54 0.068 -38.3% -2.5%

Table 15: EagerT under Different Delays

With EagerT, remote information is required by the location policy (Table 15). Performanct
degradation results mainly from the negotiation used. EagerT with probe limit setto 1 can t
viewed as a modified random algorithm which allows for rejection. Compared to Random, thi
is expected to improve results but is perhaps balanced by added state observation costs, w
seem to degrade performance when there are longer delays. EagerT exhibits very low hit re
which is a result of the random location policy used. As the variation in loads on differen
nodes grows, this is expected to degrade even more.

When we assume short delays (10/25ms), the random algorithm gives performance which

very close to that of the load sharing algorithms studied, in spite of its poor efficiency. Thi

page 24

www.manaraa.com

could be the result of unrealistic assumptions. In any case, we would like to see less activ
related to remote execution and better decisions.

Modified Algorithm

We modify the algorithms to try and handle some of the sources of instability mentione
above. This is done by selecting the “best” of each world. Our aim is to show the significanc
of some design choices made rather than suggest a specific algorithm. In our modifie
algorithm, we use Zhou's information (state dissemination) and location policies together wi
the transfer and acceptance policies suggested by Eager. Nodes are capable of making I
decisions. The request-reply protocol allows extra work to be rejected and work in transit to |
taken into account. Thus, the efficiency measures of the modified algorithm are expected
improve. Note however that the information policy is left unchanged and all nodes are sti
updated implying that the algorithm is dependent on system size and again not scalable. 1
main design choices are made as described in Table 16.

Modified
decision making invocation event driven (application arrival)
transfer policy local information only (threshold)
location policy least loaded
acceptance policy request-reply to allow rejection (thresholfl)
information policy state dissemination

Table 16: Modified - design choices

The modified algorithm was run with the same load threshold, update periddpanameters
(T1=3, P=500msA=1), and produced the results given in Table 17. Note that for the basic
case (10ms) performance is slightly degraded (still in the same range), but there is a dramz
improvement in the efficiency measures (see Table 17 and Figure 6) which convinces us tt
this is a better approach. The modified algorithm is more stable. This becomes evident wh
looking at the results for longer delays (100ms, 150ms). The degradation in response tin
when compared to the basic case (10ms), is much slower than it was for any of the ott
algorithms. Thus, the modified version is less sensitive to the assumptions made. TI
importance of using a request-reply protocol allowing for rejection of work and of making loca
decisions should not be underestimated. Through state dissemination a node can have
information available when needed. Both have significant contribution to stability anc
scalability.

page 25

www.manaraa.com

response-| %remote hit- overhead| degradation| distance from
time exec. ratio vs. 10ms random
Modified-10ms 1.90+0.038 14.16 0.82 0.015 not relevant -2.7%
Modified -25ms | 1.95t0.039 14.42 0.83 0.018 -3% 0%
Modified -100ms | 2.08t0.040 12.15 0.85 0.044 -9.4% 12.3%
Modified-150ms | 2.12+0.040 10.05 0.85 0.062 -11.5% 12.8%

Table 17: Modified algorithm (Eager+Zhou)

- 10ms

(seconds)

|:| 25ms

- 100ms

M 150ms

response

ST ZhoD Modified

Random

EagerT
Figure 6: Performance (response-time) under various network delays
Uneven Load

We also indicate the effect of different load intensities imposed on individual nodes with th
same overall load for the two cases. Table 18 summarises the performance results for 1C
and 150ms delay assumptions. These results are compared to those achieved under even
(Fig. 7). All algorithms adapt to changing load intensities with some (ZhouD and modified
exhibiting smaller variations under these conditions.

response-time{response-time-

10ms delay | 150ms delay
STankovic 2.13t0.040 2.980.061
ZhouD 1.83t0.037 2.620.052
EagerT 2.33t0.047 2.960.087
Modified 2.06t0.062 2.320.072

Table 18: Uneven Load (11.6-99.3%)

page 26

www.manaraa.com

| Even(10ms)

(seconds)

O Uneven(10ms)

B Even(150ms)

response

| Unevenl50ms)

ST ZhouD EagerT Modified

Figure 7: Performance (response-time) under different load intensities and
delay assumptions

We now turn our attention to the effect of system size on those of the algorithms which we
designed to be independent of system size.

System Size

It is clear that ZhouD, ST and the Modified algorithms are not scalable. They all hold stat
information related to all the nodes in the system. Some use broadcast for state disseminai
and others use a scheme which is topology dependent. In particular, algorithms which ust
single request protocol (ST and ZhouD) experience noticeable degradation of performance ¢
efficiency as the system size grows, since more remote execution will be tried.

EagerT is independent of system size and under the same delay assumption we get compar
results under different system sizes (Table 19). Note however that the negotiation before
decision is made implies sensitivity to resource characteristics (Fig. 7) which violates th
scalability requirement.

system size | response-time| %remote exec.
5 nodes 2.26+0.045 16.3
10 nodes 2.18t0.043 18.1
15 nodes 2.17#0.022 19.2

Table 19: EagerT with 100ms delay

We have assumed the availability of a communication co-processor and therefore the effect
broadcast is to overload the communication channels (which can be seen in the st
dissemination rate per node) but it is not accounted for in the performance measure.

page 27

www.manaraa.com

5. CONCLUSIONS

Several algorithms from the literature were selected and evaluated using the suggested anal
method. We have shown how these measures can be used to critically examine load shail
algorithms and suggest improvements.

Stability and scalability related issues were studied more carefully. The algorithms wer
analysed under favourable and less favourable conditions. Activities related to remote execulti
should be restricted to a small proportion of the activity in the system (application arrival), an
an algorithm should minimise the number of incorrect decisions and prevent them fror
proceeding. To this end, a request-reply rather than single-request protocol ought to be us
Eligibility based on command type or any other cpu requirement estimation, as suggested
some other researchers [6, 27, 32], is not generally feasible. Eligibility restricts remot
execution related activities and consequently contributes to stability and scalability. The sar
effect can be achieved by using a more restrictive transfer policy.

Decision-making issues such as periodicity and thresholds were also examined. By adjusti
them, it has been shown that efficiency measures can be improved. Also, nodes should
capable of making local decisions, the quality of which depends largely on the quality of th
available information. To achieve further improvements, the information dissemination polic)
should therefore also be evaluated. The state metric, which is also a source of instabili
should have an absolute well understood meaning. The load metric can be preprocessed be
transmission to filter out transient, insignificant state changes. This can be achieved by taki
the average over a window or mapping the load metric into a small set of n values (n-ste
representation). If we have two algorithms giving performance results within the same rang
we would prefer an algorithm with a low %remote execution and high hit-ratio, since it is les
sensitive to assumptions made.

Recent work on a Flexible Load Sharing algorithm (FLS) [17] uses both of the above load sta

metric techniques, i.e. calculate the average utilisation U (also a function of queue length) ov
HOverloadedifWe>T

a window, and map it into one of three possible load stalesiUnderloadediflUT
[(MEMediumlbaddtherwise.

The new state metric has a well understood meaning and, as suggested by Alonso, uses
thresholds dand Tu to allow sharing even when nodes are slightly used [1]. Event driven
update is used as the basic information policy, together with slow periodic update to accou
for failures. This is in contrast to Alonso who still uses Eager’s random location policy. Thes
modifications result in significantly improved efficiency measures. For scalability purposes
the system is partitioned into overlapping domains (a domain is simply a group of nodes
Domain membership changes dynamically as nodes are independently and mutually includec

page 28

www.manaraa.com

excluded from their respective domains. Biased random selection is used to retain nodes
interest in its domain (an Overloaded node retains an Underloaded one) while replacing oth
by random selection from the rest of the system. Further work is still required to assess a
confirm the current promising results in practice.

REFERENCES

[1]
[2]
[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

R. Alonso, L. L. Cova, “Sharing Jobs Among Independently Owned ProcedBwus.,
of the 8th Int. Conf on DCS, pp. 282-287, 1988 IEEE.

A. Barak, A. Shiloh, "A Distributed Load Balancing Policy for a Multicomputer”,
Software-Practice and Experience, 15(9), pp. 901-913 1985.

A. Barak, Y. Kornatzky, "Design Principles of Operating Systems for Large Scale
Multicomputers”,Proc. of the International Workshop on Experience with Distributed
Systems ,Kaiserslautem, FRG September 1987, LNCS 309, Springer-Verlag, pp. 104
123.

A. Barak, "The Evolution of the MOSIX Multi-Computer UNIX System", Technical
Report 89-17, Hebrew university of Jerusalem, September 1989

P. Birman, T. A. Joseph, "Exploiting Virtual Synchrony in Distributed SysteRrst,.
ACM-S GOPS 11th Symp. Operating Systems Principles, pp. 123-138, Nov. 1987.

L. F. Cabrera, “The Influence of Workload on Load Balancing Strategiedroc.
summer USENIX Conf., pp. 446-458, June 1986.

T. L. Casavant, J. G. Kuhl, "A Formal Model of Distributed Decision-Making and its
Application to Distributed Load-BalancingProc. of the 6th Int. Conf on DCS, pp.232-
239, 1986 IEEE.

T. L. Casavant, J. G. Kuhl, "Analysis of Three Dynamic Distributed Load-Balancing
Strategies with Varying Global Information Requiremen@sgc. of the 7th Int. Conf on
DCS, pp.185-191, 1987 IEEE

T. L. Casavant, J. G. Kuhl, "A Taxonomy of Scheduling in General-Purpose Distributec
Computing Systems"|EEE Trans. on Soft. Eng., vol SE-14, No.2, pp. 141-154,
February 1988.

T. L. Casavant, J. G. Kuhl, "Effects of response and stability on scheduling ir
distributed systems"|EEE Trans. on Soft. Eng., Vol. SE-14, no. 11, pp.1578-1588,
November 1988.

D. L. Eager, E. D. Lazowska, J. Zahorjan, "Adaptive Load Sharing in Homogeneou:
Distributed Systems"|EEE Transactions on Software Engineering, 12(5), pp. 662-675,
May 1986.

D. L. Eager, E. D. Lazowska, J. Zahorjan, "The Limited Performance Benefits of
Migrating Active Processes for Load Sharingtpc. ACM Sgmetrics, pp. 63-72, May
1988.

K. Efe, B. Groselj, "Minimizing Control Overheads in Adaptive Load ShariRgic. of
the 9th Int. Conf on DCS, pp. 307-315, 1989 IEEE.

D. Ferrari, S. Zhou, "A Load Index for Dynamic Load Balancingtoc. Fall Joint
Computer Conf., Dallas, Texas, ACM-IEEE, pp. 684-6908lov. 1986.

J. Kramer, J. Magee, "The Evolving Philosophers Problem: Dynamic Change
Management")EEE Transactions on Software Engineering, 16(11), pp.1293-1306,
Nov. 1990.

page 29

www.manaraa.com

[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]
[30]
[31]

[32]

O. Kremien, J. Kramer, J. Magee, “Rapid Assessment of Decentralized Algorithms”
Proceedings of the 7th Int. Conf on Computer Systems and Software Engineering
(CompEuro 90) , Israel, May 1990, pp. 329-335.

O. Kremien, J. Kramer, "Flexible Load Sharing in Configurable Distributed Systems",
Proc. of IEE Int. Workshop. on Configurable Distributed Systems, London, U.K.,
March 1992, pp. 224-236.

P. Krueger, M. Livny, "The Diverse Objectives of Distributed Scheduling Policies",
Proceedings of the IEEE Int. Conf on DCS |EEE, pp. 242-249, 1987.

P. Krueger, M. Livny, "A Comparison of Preemptive and Non-Preemptive Load
Distributing", Proceedings of the 8th IEEE Int. Conf on DCS IEEE, pp. 123-130, 1988.

A. Kumar, M. Singhal, T. L. Ming,"A Model for Distributed Decision Making: An
Expert System for Load Balancing in Distributed SysterRsdc. of the 11th Symp. on
Operating Systems, IEEE, pp. 507-513, 1987.

M. Livny, M. Melman, "Load Balancing in Homogeneous Broadcast Distributed
Systems"Proc. of the Conf. on Performance ACM, pp. 47-55, 1982.

J. Magee, J. Kramer, M. Sloman, "Constructing Distributed Systems in Q&€&
Transactions on Software Engineering, 15(6), pp. 663-725, June 1989.

R. Mirchandaney, D. Towsley, J. A Stankovic, "Analysis of the Effects of Delays on
Load Sharing",|EEE Transactions on Computers,C-38(11), pp. 1513-1525, Nov.
1989.

J. M. Smith, "A Survey of Process Migration MechanisrCM Operating Systems
Review, Vol. 22, No. 3, pp. 28-40, July 1988.

J. A. Stankovic, "Simulations of Three adaptive,Decentralized Controlled, Job
Scheduling Algorithms"Computer Networks 8, pp.199-217, August 1984.

J. A. Stankovic, "Stability and Distributed Scheduling AlgorithmEEE Transactions
on Software Engineering, Vol. SE-11, No. 10, pp. 1141-1152, October 1985.

A. Svensson, "History, an Intelligent Load Sharing Filt&r'oc. of the 10th Int. Conf
on DCS IEEE, pp. 546-553, 1990.

M. M. Theimer, K. A. Lantz, "Finding Idle Machines in a Workstation-Based
Distributed System",|EEE Transactions on Software Engineering, 15(11), pp. 1444-
1458, November 1989.

Y.-T Wang, R. J. T. Morris, "Load Sharing in Distributed SystertsEE Transactions
on Computers c-34(3), pp. 204-217, March 1985.

S. Zhou, “An Experimental Assessment of Resource Queue Lengths as Load Indices
Proc. USENIX Winter Conference, Washington D.C., pp. 73-82an. 1987.

S. Zhou, D. Ferrari, “A Measurement Study of Load Balancing performaRcec, of
the 7th Int. Conf on DCS IEEE, pp. 490-497, 1987.

S. Zhou, “A Trace-Driven Simulation Study of Dynamic Load Balancin@EE
Transactions on Software Engineering, 14(9), pp. 1327-1341, September 1988.

page 30

www.manaraa.com

